
The data of other investigators [4, 5, 6] are also generalized with the help of Eq. (Ii) 
(Fig. 4). Thus, the data from [4, 6] are generalized by this dependence within the limits of 
of • 25% (Fig. 4), while the experimental points obtained from the data of [5] are located 
below the calculated curve by an average of 20-30%. 

NOTATION 

d, tube diameter, r~n; Cp, specific isobaric heat capacity, J/mole.~ P, pressure, N/m2; 
o o qw, heat-flux density at wall, W/m2; T, temperature, K; AT, local temperature head, K; Tm, 

pseudocritical temperature, ~ i, entha!py , J/mole; ~f, local heat-transfer coefficient, 
W/m2.~ ~-w, mass velocity, kg/m2.sec; Ts/Tm, reduced temperature of stream core; B, coef- 
ficient of volumetric expansion, ~ F, correction factor; H', h +, dimensionless numbers. 
Indices: w, parameters of wall; s, parameters of stream core; 0, initial conditions; cr, 
critical 
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HEAT TRANSFER BETWEEN ROTATING DISKS IN A CLOSED CAVITY 

V. K. Shchukin and V. V. Olimpiev UDC 536.24 

The heat transfer of a disk in a closed rotating cavity with laminar and turbulent 
boundary layer s is determined experimentally. 

Information on heat transfer in closed rotating cavities is required when estimating the 
temperature state of the rotors of gas and steam turbines, electrical machinery, etc. The 
theoretical solution of this problem for the self-similar case of laminar convection has been 
examined in [i] and for the case when the laminar or turbulent boundary layers at the sur- 
faces of the disks are separated by the core of the stream -- in [2, 3]. 

The theoretical solutions are obtained with the use of a number of simplifying premises. 
Moreover, mass forces alter the boundaries of the modes of flow [4] and a theoretical analy- 

A. N. Tupolev Kazan' Aviation Institute. Translated from Inzhenerno-Fizicheskii Zhurnal, 
Vol. 30, No. 4, pp. 613-618, April, 1976. Original article submitted April 15, 1975. 

This material is pro tec ted  by  copyright  registered in the name o f  Plenum Publishing Corporatton, 227  West 17th Street, N e w  York, N. Y. 
10011. N o  part  o f  thispubl icat ion may  be reproduced, s tored in a retrieval system,  or transmitted, in any f o rm  or by  any means, electronic, 
mechanical, photocopying,  microfilming, recording or otherwise, w i thou t  writ ten permission o f  the publisher. A copy o f  this article is 
available from the publisher f o r  $7.50. ,il 

394 



sis is not yet capable of predicting these changes. All this makes it necessary to study 
this problem experimentally. 

A schematic diagram of the experimental installation is shown in Fig. i. The experimen- 
tal cavity is formed by two disks 1 which are 930 mm in diameter and 25 mm thick, a spacing 
ring 2, and a pipe 3. Inner dimensions of rotating cavity: maximum and minimum diameters 
834 mm and 81 mm, width ~ = 50 mm. The annular gap 12 with a radial dimension of 2 mm is 
designed for filling the cavity with water. About 25% of this gap by area is blocked by 
projections 13 of the pipe, which practically eliminates the return flow of liquid through 
this gap during an experiment. The material of the disks is El 481 and that of the ring is 
EI 417. The rotor assembly is set into rotation through the reducer 4 by a direct current 
motor with smooth regulation of the rpm. Through the shaft of the multiplier--reducer 5 the 
rotation is conveyed to the rpm pickups 6 of the tachometers 7 and 8 (ITE-I and TSFUI-2) 
while it is conveyed from the rotor to the current pickups 9. The contact of the graphite 
brushes of the current pickups with the rings is provided by a pneumatic system. 

The heating of one of the disks was accomplished using the electric furnace i0 through 
the air gap ii. The spiral furnace assures uniform heat release over the area. 

The local heat-exchange coefficients at the surface of the "hot" disk were determined on 
the basis of the gradient method. For this purpose 34 copper-Constantan thermocouples were 
set on the surface of each disk along a closed contour located in a plane passing through the 
axis of rotation. The thermocouple readings were recorded with three modified 24-point EPP- 
09 instruments. The temperature gradients at the heat-exchange surfaces were determined on 
the basis of the calculation of the temperature field of the disk by the numerical method on 
an M-222 computer with allowance for the temperature dependence of the heat capacity and 
thermal conductivity of the disk material. 

The heat-exchange coefficients were measured in a quasisteady mode of free convection. 
In accordance with [5] the quasisteadiness of the mode was verified from the condition 

O= c~, 
9ciL M (bGr* Pr)b'si> 1. (I) 

The relative width I/R = 0.12 of the experimental cavity (R is the maximum radius of the 
cavity in meters) assured the absence of merging of the boundary layers. In experiments with 
a closed, rectangular, stationary cavity [6] merging of the boundary layers was not observed 
even with a relative width of 0.025, while for flow around a disk in a housing without a duct 
[7] it was not observed with I/R~0.1. 

The results__of the experimental study are generalized in the form of the dependence Nu = 
f(Ra~), where Ra~ is the average modified Rayleigh number, which in accordance with [6] is 

determined by the expression 

- R a ~  = ~,~ Pr = GrR Nu Pr - -  jR3 [3At N u  Pr, (2) 

~ 7  ~. ~ "%. "% ",. ~ 2 
a " ; ~ m  tr, p-o9 

13 ~" ff 

v l / / / l l l t l l l / l / ~  i i i  i i ! / 1 1 1 1  / i I 

Fig. i. Diagram of experimental installation. 
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TABLE i. Experimental Data on Heat Transfer 

rad 
{Op , ,  

s e a  

20,93 
31,4 
20,93 
31,4 
20,93 
20,93 
20,93 
41,9 
41,9 
67,99 
67,99 
67,99 

115,13 
115,13 
115,13 
146,53 
146, 53 
146,53 
209, 33 
209,33 
209,33 
230,27 
230,27 

tw I, ~ 

23,92 
27,06 
41,50 
51,71 
41,42 
56,08 
45,71 
33, 88 
4~,25 
36,81 
48,06 
57,83 
33, 12 
43,93 
70, 15 
31,66 
39,74 
59.03 
36,71 
47,88 
59,21 
47,19 
51,12 

tw2, ~ 

19,45 
22,05 
32,87 
24,06 
21,12 
23, 38 
33,78 
23, 48 
24,71 
20,38 
24,60 
33,67 
19,58 
25, 13 
53,39 
24,36 
28, 12 
44,22 
30,45 
36,57 
46,64 
38,98 
42,81 

W 
a' m2. d----~g 

47,00 
56,47 
53, 14 
78,39 
60,31 
67,68 
53, 05 
68,77 
80,71 
61,68 

102,75 
168, l0 
117,00 
141,06 
280,92 
104,45 
123,95 
213,09 
151,53 

�9 238,70 
369,29 
313,82 
390, 96 

Nu 

32,47 
38,70 
35,23 
50,95 
39,99 
43,66 
34,87 
46,36 
53,20 
41,30 
67,23 

108, 12 
79, 00 
93,05 

177,37 
70,77 
82,47 

136,79 
101,49 
156,25 
237, O0 
205,70 
254,40 

3,46.1013 
1,26.10 TM 

1,6.5.10 TM 

2,33.1014 
4,4.10 TM 

l, 17.1014 
2,59.10 TM 

7,8.10 TM 

2,49.10 ~4 
3,27.10L4 
l, 097.1015 
2, 36. l0 TM 

1,27.10 I~ 
3, 12. l015 

101~ 
9,27. l014 
2,4.10 '5 
8,73. l01~ 
2,88. l0 is 
l, 17- l0 TM 

2,62. l0 TM 

l, 33.10 TM 

1,85.10 le 

where At = twl--tw2 is the difference, averaged over the heat-exchange area, between the tem- 
peratures of the "hot" and "cold" disks, characterizing the driving force of convection in 
the cavity. 

The thermophysical properties of the liquid are determined for its average temperature 
while the centrifugal acceleration j, m/sec 2, is determined at the maximum radius of the 
cavity. 

The heat-exchange coefficient entering into the Nusselt number is determined by the equa- 
tion 

a = q/At .  

Modes o f  h e a t  exchange  i n  which  ~ = 20-230 r a d / s e c  and q = 0 - 5 . 1 0  3 W/m 2 (Ra---~ = 10 xa-  
3 . 1 6 . 1 0  I s  and G~rR/Re = = 0 - 0 , 0 2 )  were  s t u d i e d .  

The e x p e r i m e n t s  were  p e r f o r m e d  i n  t h e  f o l l o w i n g  o r d e r :  a f t e r  t h e  i n s t a l l a t i o n  was p r e -  
pa red  w i t h  t he  r o t o r  s t a t i o n a r y  t h e  p o t e n t i o m e t e r s  f o r  t h e  c o n t i n u o u s  r e c o r d i n g  of  t he  tem- 
p e r a t u r e s  a t  23 p o i n t s  o f  t he  s u r f a c e s  of  each  d i s k  were  t u r n e d  on,  t h e n  t he  r o t o r  was t a k e n  
up t o  t h e  c h o s e n  r o t a t i o n  s p e e d ,  and a f t e r  a c e r t a i n  t ime  i n t e r v a l  t he  oven was t u r n e d  on.  

The r e s u l t s  o f  t he  s t u d y  a r e  p r e s e n t e d  i n  Tab le  1 and F i g .  2. As seen  from the  f i g u r e ,  
a t  a c o n s t a n t  r o t a t i o n  speed  t h e  h e a t i n g  o f  t he  r o t a t i n g  l i q u i d  f i r s t  l e a d s  to  a d e c r e a s e  i n  
t he  h e a t - e x c h a n g e  c o e f f i c i e n t  and t h e n  t o  i t s  i n c r e a s e .  Th i s  can be e x p l a i n e d  by t he  f a c t  
t h a t  a t  t he  s t a r t  of  t he  h e a t i n g  s t a g e  t h e  t e m p e r a t u r e  heads  a r e  s m a l l  and do n o t  p r o d u c e  
t h e r m a l  c o n v e c t i o n ,  r a t h e r  t h e  h e a t  i s  t r a n s f e r r e d  to  t h e  l i q u i d  by t h e r m a l  c o n d u c t i o n .  The 
f u r t h e r  i n c r e a s e  i n  t he  t e m p e r a t u r e  head l e a d s  t o  t h e  a p p e a r a n c e  o f  c o n v e c t i v e  m o t i o n  w i t h  
t h e  f o r m a t i o n  a t  t he  s u r f a c e s  o f  t he  d i s k s  of  b o u n d a r y  l a y e r s ,  l a m i n a r  o r  t u r b u l e n t ,  depend -  
ing  on t h e  r o t a t i o n  s p e e d  and t h e  h e a t - f l u x  d e n s i t y .  At t h i s  s t a g e  o f  h e a t i n g  of  the  l i q u i d  
t he  dependence  N'ff= f(R-a~) becomes  t h e  same f o r  d i f f e r e n t  r o t a t i o n  s p e e d s .  

The r e s u l t s  o f  t h e  e x p e r i m e n t s  w i t h  a d e v e l o p e d  b o u n d a r y  l a y e r  a t  t he  s u r f a c e s  o f  the  
d i s k s  a r e  g e n e r a l i z e d  by t he  s i m i l a r i t y  e q u a t i o n s  

~r ~ = l 0 1 2 -  2. l01', Nu = 1,82 ~ o . , ,  (3) 

for ~ = 2.101' -- 3.16. l0 is, ~ = 0.000398 ~ 0 . 3 5 .  (4) 

After the substitution of ~a'~ from (2), Eqs. (3) and (4) are reduced to the form 

N-u = 1.07 ~"l 

Nu = 0,00000589 ~ . 5 3 9 .  

(5) 

(6) 
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Fig. 2. Results of generalization of experiments with a 
developed boundary layer: i) ~ = 20.93 rad/sec; 2) 20.93; 
3) 31.4; 4) 52.33; 5) 67.99; 6) 115.13; 7) 146.53; 8) 
209.33; 9) 230.27. 

Fig. 3. Dependence of ~aa~b o on Re: i) m = 20.93 rad/sec; 

2) 31.4; 3) 41.9; 4) 41.9; 5) 52.33; 6) 52.33; 7) 52.33; 8) 
67.99; 9) 88.97; i0) 115.13; ii) 115.13; 12) 146.53; 13) 
209.33; 14) 209.33. 

A comparison of the powers on the numbers Ra R in Eqs. (5) and (6) with the known experi- 
mental functions for heat transfer with free convection in gravitational and inertial mass 
force fields allows one to assume that the dependence (5) characterizes the heat transfer 
with a laminar, and the dependence (6) with a turbulent, boundary layer. Consequently, for 
th___e conditions under consideration the formation of a turbulent boundary layer occurs with 
RaRc r = 4.17.1012 

The boundary between the conductive and convective mechanisms of heat exchange between ---, 
the surfaces of the disks and the liquid, determined by the quantity RaRbo, depends on the 

rotation speed. The dependence Ra~b ~ = f(Re), (Re = ~R2/v), constructed with the help of 

Fig. 2, is shown in Fig. 3. As seen from the figure, the quantity R~a~b ~  increases with an 

increase in the rotation speed, which indicates the stabilizing effect of rotation on the 
movement of the liquid. 

In Fig. 4a the results of a study of the heat transfer of water in a closed rotating gap 
(lines I and II, similarity equations Nu = 1.07R-aa~ "111, N'~ = 0.00000589R-a~ "539) are compared 
with the results of an experimental study of heat transfer in a stationary, closed, rectan- 
gular cavity with laminar and turbulent boundary layers (lines III and IV, similarity equa- 

0 25 0 012 0 05 I 3 tions N-u = 0.42 ~H" Pr ' (H/l)- " , N-u = 0.046 ~ ) [6] and with the results of an ex- 

perimental study at a vertical wall in a large volume with laminar and turbulent boundary 
layers (lines V and VI). We assume that the ratio of the average heat-transfer intensity to 
the local value equals 1.25 in the laminar mode and 1 in the turbulent mode, when the simi- 
larity equations have the form N--u = 0.278 ~-~.25 N--u = 0.1996 ~-o =s2 ~a H" [8] The experiments 

described in [6] and [8], were performed on water with q = const. 

In Fig. 4a it is seen that with Ra R = idem the heat transfer occurs less intensely at the 
surface of a rotating disk than at a stationary surface. This is due primarily to the later 
transition from the laminar to the turbulent boundary layer at a rotating surface compared 
with a stationary surface and to the stabilizing effect of the inertial mass forces on the 
flow. Some differences between the functions N--~ = f(~R) at the rotating disk and at the 
stationary surface are connected with the method of averaging the heat-exchange coefficient 
on the surface of the disk and with the choice of the maximum value of the inertial accelera- 
tion as characteristic. 

Other reports have also indicated the stabilizing role of centrifugal mass forces. For 
example, in a study of friction and the conditions of the transition from laminar to turbulent 
flow this effect was observed in radial rotating channels [9] and in pipes when rotated about 
their own axis [4]. 
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Fig. 4. Comparison of results obtained with literature 
data. 

The comparison of the experimental results obtained with the theoretical results of 
Kapinos [2, 3] was made under the assumption that the effect of the physical properties of 
the liquid on the heat-exchange process is taken into account by the Prandtl number, which 
enters into the Rayleigh number. The validity of this assumption for laminar flow in the 
region of Pr~0.7 is confirmed theoretically and experimentally; in turbulent flow an addi- 
tional dependence of the constant c in the similarity equation N-~= c(G-r-HPr) m on the Prandtl 
number is predicted in some theoretical reports, but sufficient proof of this assumption has 
not ye t been obtained. In the units compared, with allowance for the assumptions made, 
Kapinos's equations for laminar and turbulent boundary layers have the form (the heat-trans- 
fer intensity in the laminar mode at the "hot" and "cold" disks is assumed to be the same) 

N---u = 0,353 ~-a~O.2, 

N'--u = 0.0364 ~--~o.2s6. 

(7) 

(8) 

In Fig. 4b, lines I and II correspond to Eqs. (3) and (4) and lines III and IV to Kapi- 
nos's solutions for laminar and turbulent boundary layers. 

Extrapolation of the experimental data obtained with a laminar bound__ary layer to the re- 
gion of low Rayleig h numbers shows that the true values of the number Nu are close to those 
of the theoretical equation of Kapinos. The true Nusselt numbers with a turbulent boundary 
layer are considerably less than the theoretical values calculated from Kapinos's equation 
because of the stabilizing effect of the centrifugal mass forces on the free motion of the 
liquid. 

NOTATION 

~, width of cavity, m; if, average heat-exchange coefficient, W/m2.deg; q, heat-flux den- 
2 2 sity, W/m ; q, average heat-flux density, W/m ; D-~R, average modified Grashof number; accel- 

eration for stationary systems equals free-f__all acceleration; Pr, Prandtl number; ~rR, aver- 
age Grashof number; Re, Reynolds number; RaRcr, critical Rayleigh number of transition in 
modes of flow; to, angular velocity, rad/sec; v, coefficient of kinematic viscosity, m2/sec; 
c, constant in a similarity equation; m, exponent in a similarity equation; B, coefficient 
of volumetric expansion, i/deg; RaR, average Rayleigh number, equal to GrRPr ; H, height of 
wall or rectangular cavity, m; R~a~bo, boundary Rayleigh number determining the transition 

from conductive to convective heat exchange; At, difference in wall temperatures for rotating 
and stationary cavities or twice the temperature difference between wall and liquid for a 
vertical wall in a large volume, ~ e , generalized variable of heat capacity of wall; cf, 
heat capacity of liquid; p, density of liquid; Cw, heat capacity of wall per unit surface 
area; L, height of wall; M, derivative of generalized temperature distribution, tabulated in 
[5]; b, coefficient of time normalization, tabulated in [5]; Gr*, modified Grashof number 
calculated from L and heat flux corresponding to stationary mode; Nu, average Nusselt number, 
equal to ~/X or aH/X; X, coefficient of thermal conductivity, W/m.deg. 
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EFFECT OF TEMPERATURE AND SLOPE OF A GAS MAIN IN NONISOTHERMAL 

UNSTEADY GAS MOVEMENT 

L. E. Danielyan UDC 533.6 

The effect of the temperature and slope of a pipeline on the variation in gasdynamic 
parameters is studied using numerical methods. 

The solution of the problem of the unsteady movement of a real gas through a long gas 
main has great theoretical and practical importance. The problem becomes relatively com- 
plicated when the nonisothermy and slope of the gas main are taken into account. The effect 
of the slope of the gas main on the parameters of the moving gas becomes important in moun- 
tainous terrain or when the gas is fed through a long gas main of large diameter with a slope 
which varies (even slightly) from horizontal. 

Many reports have been devoted to these problems. Numerous linearized solutions of the 
problem of unsteady movement of a real gas through long gas mains are known([l-9] and others). 

The case of a vertical pipe set in natural soil, which occurs when gas is extracted from 
great depths, is of particular interest. 

The unsteady nonisothermal movment of a gas through a long pipeline is examined below. 

i. Differential Equations of Motion. Initial and Boundary Conditions 

Let us consider the one-dimensional, unsteady, nonisothermal motion of a gas in a long 
gas main. Such gas motion can be described by the system of differential equations [i] 

Op ~gu 2 
---- + pgsin ~; 
Ox 86 

Op 0 
- o-? = 0-7 (ou); ( 1 . i )  

p = 9 g R T ;  G = gsgu. 

It is assumed that the gas temperature varies along the gas main as a function of the co- 
ordinate and is a function assigned in advance. 

Placing the origin of coordinates at the start of the pipe, directing the axis along the 
length of the pipe, and assuming for determinacy that the gas temperature along the pipeline 
varies by a linear law, one can express T(x) by the following equation [i0]: 

T (x) = T s --(T s -- Te) x (1.2) 
L ' 
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